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Abstract 
Milk production mainly from the caws varies in different areas of Albania. In field areas, productivity has grown 
as a result of the increasing number of caws, the increase in productivity and improvement of basic food. 
Feeding according to stages is a programme that includes herd feeding in time periods based on the milk 
productivity level, fat quantity in milk, food quantity consumed and the weight of the animal alive. Farm 
producers need to draft food rations in a way so that can fulfill animals need in each of these stages for an 
optimal production, to minimize or avoid metabolic anomalities, to increase animals lifetime and the profit from 
animal herd. The main purpose of this study is the usage of contemporary methods in the economic analyses of 
utilizing resources, materialized in small domestic farms. The study took place in “Agrotex’’ farm in Lushnje 
district. The data was analysed and processed according to nutrition stages (1-up to 150 days of lactation, 2-over 
150 days of lactation and 3-withering period ) milk yield and calves weight on birth for a period of 6 years. In 
addition to nutrition stages, the data was analysed and processed also for milk yield and calves weight on birth. 
The study utilizes the method of approximation of undetermined variables to solve restriction systems, as well 
as Cobb-Douglas production function to analyse the impact of food portion components on milk production. 
This study proves that balance nutrition makes up for the primary factor to increase the effectivity of economic 
farms.  
Keywords: optimal structure, milk production, nutrition, approximation with the method of undetermined 
variables, food portion. 

Introduction 

This study publishes the economic analyses of 
the impact of three nutrition factors – moisture food, 
dry food and concentrate — in 2 outputs: milk yield 
and the average weight of inborn calves, as well as the 
use of production function in agricultural sector.  

The main purpose of this study is to use 
contemporary methods in the economic analyses of 
resource usage, all this made concreate in a livestock 
complex. 

Milk production mainly from the caws varies in 
different areas of Albania. Nowdays the sustainable 
development of agricultural farms and especially of 
livestock farms requires product optimization and at 
the same time the continuous analyses of economic 
and techinical impact factors.  

The production function used during the study is 
that of Cobb-Douglas and it aims to analyse the 
impact of the three impact nutrition factors on caw’s 
milk production and on the average weight of 
newborn calves. To be successful, dairy producers 
must master all aspects of dairy management. Proper 
dry cow nutrition and management is critical, since 
decisions made during this period will have a 

tremendous impact on milk production and health 
during the next lactation [9]. This study proves once 
more that using cattle volume nutrition system in our 
country’s conditions makes up the primary factor for 
increasing the economic effectivity of farms. At the 
end of the study it is proved that the maximal income 
and profits in cattle farms are reached at the same 
point of route expansion where the cost is minimal.  

Materiali dhe metoda 

The production function forms for milk and the 
average weight of in born calves are determined. 

The suitability of selected models is proved.  
The optimal combination of inputs (food ration 

structure) to maximize gain and minimize costs is 
discovered.   

It is used the approximation method by using the 
undetermined coeficinents to solve the system of 
margins and to determine the optimal structure of milk 
production.  

It is used the method of linear regression to 
determine the parameters of the model through the 
packet of econometric computerized programmes 
SPSS. 
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 After deciding on options through estimates it 

is calculated the correct solution based on 
MAPLE programme. 
 
The livestock complex studied for this purpose 

was “Agrotex” in the field area of Tre Ura village, 
Grabian commune, Lushnje disctrict. The data of 
feeding through stages was analysed and processed 
(1- up to 150 days of lactation, 2- over 150 days of 
lactation and 3- dry period), as well as data on milk 
yield and the average weight of newborn calves. 
These data were analysed for a six-year period (2008-
2013 period).  

In order to realize a more accurate dependance of 
the newborn calves’ weight and milk quantity from 
inputs (food) it is procedeed according months. The 
average values of milk yield and average quantity of 
food were grouped thoughout a year (per months) 
according to the 3 stages of caw treatment, as well as 
the average weight of newborn calves. 

After data processing there were built concreate 
functions, milk yield analyses and the average weight 
of newborn calves was undertaken after data 
processing in relation to the three production 
functions (moisture, dry and concentrate food). 

The average prices for respectively 1 kg of 
moisture food, 1 kg of dry food and 1 kg of 
concentrate are 3,8 L; 4,8 L and 15,2 L.  

The production function was requested in the 
following form γβα

321 xxAxy =  
The appeal of the Cobb-Douglas type of function 

rests largely with its simplicity [4]. 

Linear regression method was used to determine 
γβα dheA ,,log  through the econometric 

computerized programmes SPSS, from which resulted 
that the models are suitable.  We can save predicted 
values, residuals, and other statistics useful for 
diagnostics. Each selection adds one or more new 
variables to your active data file [11]. 

It came out that the models were appropriate. The 
presence of association does not necessarily imply 
causation. Statistical tests can only establish whether 
or not an association exists between 

Variables [15]. It is confirmed the hypothesis for 
the importance general regression and shown that at 
least one of the variables provides information for 
prognosis of y [2]. Based on these data, the folllowing 
production functions were built:   

0.290 0.126 0.174
1 1 2 339.1343266y x x x= ⋅ ⋅ ⋅  

0.317 0.131 0.126
2 1 2 30.309127953y x x x= ⋅ ⋅ ⋅  

where 1x , 2x , 3x 1y  and 2y  show respectively 
the amount of moisture, dry and concentrate food, 
average milk production and the average weight of 
newborn calves.  

Profit maximization   

As in the single product case, the mathematics of 
profit maximization can be approached as either a 
constrained optimization problem or unconstrained 
optimization problem formulated by substituting the 
explicit form of the production function into the profit 
function for x [1]. For profit maximization we have 
asserted the profit function:  

              
33221132123211 ),,(),,( xrxrxrxxxgpxxxfpF −−−+=  

 
Also,  we have asserted the necessary conditions for profit maximization.  
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Thus we have to solve the system (*) 
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Technically it is difficult to find the accurate 

solution of the system (*), thus we have found close 
solutions with a satisfying estimate through the 
method of undetermined coeficients, that has made 
possible determining the areas where 1y  and 2y  
move. Theorem presents a method for using 
polynomials to approximate functions that cannot be 
evaluated [7]. To solve systems of equations 
numerically, one can use the f solve (float solve) 
command [10]. These areas have served as options to 
find the accurate solution of the system (*) based on 
MAPLE programme. 

Remember that:  
0.290, 0.126, 0.174, 0.317, 0.131, 0.126,a b cα β γ= = = = = =

  
1p = 37.5, 2p = 350, 1r = 7.4, 2r = 7.6, 3r = 16.5 . 

According to this method, the continuous 
function is given )(xfy =  in  [a,b] 

where, segment [a,b] is divided through n+1 

points ,,..., 10 nxxx where ax =0  and bxn = .  
If we use Cx  as the center of fraction, then the 

average value of the function on point m of dividing 
the segment [a,b] would give the following equation 
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whereas the coeficient iA will be determined.  
Using this method in approximating our functions we 
will have to solve first these equation systems in order 
to determine the values of iA  variables. 

For milk production function 
0.290 0.126 0.174

1 1 2 339.1343266y x x x= ⋅ ⋅ ⋅  we act as 
below . 

For 
0.290

1x   we will have : 

    A0 + A1 (9900 – Cx ) + A2 (9900 – Cx )2 + A3 9900– Cx )3 = 9900 0.290 
    A0 + A1 (9950 – Cx ) + A2 (9950 – Cx )2 + A3 (9950 – Cx )3 = 9950 0.290 
    A0 + A1 (10050 – Cx ) + A2 (10050 – Cx )2 + A3 (10050 – Cx )3 = 10050 0.290 
    A0 + A1 (10100 – Cx ) + A2 (10100 – Cx )2 + A3 (10100 – Cx )3 = 10100 0. 0.290 
There is  Cx  = 10000. Coeficient values will be accordingly 
 A0 = 14.45439771,  A1 = 0.0004191776 ,  A2 = -0.14881 ⋅  10-7 ,  A3 = 0.84 ⋅10-12                        
Then we will find that :  

1x 0.290 ≈ 14.45439771 + 0.0004191776( 1x  – 10000) -0.14881 ⋅  10-7( 1x  – 10000)2 +  
 0. 84 ⋅10-12 ( 1x  – 10000)3 

For 0.126
2x   we have that Cx  = 5350. Coeficient values will be respectively 

A0 = 2.949664198,  A1 = 0.0006946871,  A2 = -0.56755 ⋅  10-8 ,  A3 = 0.664 ⋅  10-12                        
And then we will find that :  

2x 0. 126 ≈ 2.949664198+0.0006946871 ( 2x  – 5350) -0. 56755 ⋅10-8 ( 2x  – 5350)2 + 
 0. 664 ⋅10-12( 2x  – 5350)3 . 

For 0.174
3x   we have that Cx  = 1780. Coeficient values will be respectively  

 A0 = 3.677672740,   A1 = 0.0003595028 ,  A2 = -0.83424 ⋅  10-7 ,   A3 = 0.285 ⋅10-10                             
Then we will find that :  
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 3x 0.174 ≈ 3.677672740+ 0.0003595028 ( 1x  – 1780) -0.83424 ⋅10-7 ( 1x  – 1780)2  

+ 0. 285 ⋅10-10 ( 1x  – 1780)3 
This way, milk production function is average with the polynomial function as follows . 
  y1 ≈  39.1343266 [ 10.26262171 + 0.0004191776 1x - 0.14881 ⋅10-7 ( 1x  - 10000)2 + 0.84 ⋅10-12 

( 1x  - 10000)3][ 2.578006600 + 0.00006946871 2x  - 0.56755 ⋅10-8( 2x - 5350)2 + 0.664 ⋅10-12  

( 2x - 5350)3][ 3.037757756 + 0.0003595028 3x  - 0.42747 ⋅10-7 ( 3x  - 1780)2 + 0.285 ⋅10-10  

( 3x  - 1780)3] 
 
For meat production function of calves 0.317 0.131 0.126

2 1 2 30.309127953y x x x= ⋅ ⋅ ⋅  we act as below . 

For 0.317
1x   we  have that  Cx  = 10000. Coeficient values will be respectively 

  A0 = 18.53531623,  A1 = 0.0005875698,  A2 = -0.20066 ⋅  10-7 ,  A3 = 0.110 ⋅  10-11                            
Then we will find that :  
 

0.317
1x  ≈ 18.53531623+ 0.0005875698 ( 1x  – 10000) -0.20066 ⋅  10-7 ( 1x  – 10000)2 +  

0.110 ⋅  10-11 ( 1x  – 10000)3 

For 0.131
2x   we have that  Cx  = 5350.Coeficient values will be respectively 

 A0 = 3.079033016,   A1 = 0.00007539315,  A2 =  -0.61242 ⋅  10-8 ,  A3 = 0.712 ⋅  10-12                                   
Then we will find that :  
 

2x 0.131 ≈ 3.079033016+0.00007539315 ( 2x  – 5350) -0.61242 ⋅  10-8 ( 2x  – 5350)2 + 
 0.712 ⋅  10-12 ( 2x  – 5350)3 . 

For 0.126
3x   we have that  Cx  = 1780. Coefficient values will be respectively  

  A0 = 2.567751080,   A1 = 0.0001817622,  A2 = -0.44630 ⋅10-7  ,    A3 = 0.1560 ⋅10-10                                    
Then we will find that :  
 

 3x 0.126 ≈ 2.567751080+ 0.0001817622 ( 3x  – 1780) -0.44630 ⋅10-7 ( 3x  – 1780)2  
+ 0.1560 ⋅10-10 ( 3x  – 1780)3 
In this way, the polynomial function of meat production for calves is as follows . 
  
  y2 ≈0.309127953 [ 12.65961823+ 0.0005875698 1x  -0.20066 ⋅10-7 ( 1x  – 10000)2  
+  0.110 ⋅10-11 ( 1x  – 10000)3][2.675679664+0.00007539315 2x   -  0.61242 ⋅  10-8 ( 2x  – 5350)2 + 0.712 ⋅  10-

12 ( 2x  – 5350)3][ 2.244214364+ 0.0001817622 3x  -  0.44630 ⋅10-7 ( 3x  – 1780)2 + 0.1560 ⋅10-10 ( 3x  – 1780)3] 
After determining the coefficients, the system was solved (*), by replacing the respective estimates in the 

last two equations, i.e. in solving the following system:  
       10.8750 y1 + 110.950 y2 = 7.4 x1                      
    4.7250 y1 + 45.850 y2 = 7.6 x2                        
    6.5250 y1 + 44.100 y2 = 16.5 x3 
    y1 ≈  39.1343266 [ 10.26262171 + 0.0004191776 1x - 0.14881 ⋅10-7 ( 1x  - 10000)2 + 0.84 ⋅10-12 

              ( 1x  - 10000)3][ 2.578006600 + 0.00006946871 2x  - 0.56755 ⋅10-8( 2x - 5350)2 + 0.664 ⋅10-12 

              ( 2x - 5350)3][ 3.037757756 + 0.0003595028 3x  - 0.42747 ⋅10-7 ( 3x  - 1780)2 + 0.285 ⋅10-10   

             ( 3x  - 1780)3] 
    y2 ≈0.309127953 [ 12.65961823+ 0.0005875698 1x - 0.20066 ⋅10-7( 1x  – 10000)2 +0.110 ⋅10-11  
          ( 1x  – 10000)3][ 2.675679664+0.00007539315 1x - 0.61242 ⋅10-8( 2x  – 5350)2 + 0.712 ⋅10-12   
          ( 2x  – 5350)3][ 2.244214364+ 0.0001817622 3x  -0.44630 ⋅10-7 ( 3x  – 1780)2 + 0.1560 ⋅10-10  
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          ( 3x  – 1780)3] 
 

Accurate solutions through  MAPLE programme which are the following values for 1x , 2x , 3 ,x 1y  and 2y . 

( 1x
 = 10327.55555, 2x = 4355.025298,  3x = 2717.384717,  1y = 6565.500013,   

2y
 = 45.28254528). 

 

Table 1. Estimates through constant variables 

The table shows that despite the way of approximation, the area where inputs and outputs vary are as below : 
1 [9000,12000]x ∈  , 2 [3000,5000]x ∈  , 3 [2000,3000]x ∈  , 1 [5000,7000]y ∈  , 2 [30,60]y ∈ . 

Through MAPLE, the accurate results are :  
1x

 = 10138.85488 , 2x = 4274.822552, 3x = 2664.967899 , 1y = 6424.816564 , 2y
 = 46.48621873 . 

Lets see the fulfillment of necessary conditions 
for profit maximization. In order to do this we need to 
determine the sign of Hessian determineras well as its 
main minors. The necessary conditions for profit 

maximization require that main minors leading 
Hessian determiner should be alternated in sign, 
starting with a negative sign to the first order minor. 
That is:  

  
 = -0.0005168498447 <0. 

Lets assess the determiner 
 
 

2

0.0005168498447      0.0002187093167
0.0002187093167       0.001553259003

H
−

=
−  = 0.7549679093 ⋅10-6 > 0   

3H  = 
0.0005168498447      0.0002187093167    0.0004739953505
0.0002187093167     0.001553259003      0.0004872357064
0.0004739953505       0.0004872357064    0.00512882000

−
−

−
 = -0.3298773188 ⋅10-8 < 0   

We have proved that 1H  < 0 , 02 >H ,  

3H  < 0 i.e. profit maximization will be 

achieved for the values 1x , 2x   and 3x  that solve the 
system (*).   

Conditioned cost minimization   
The following function are given  

cba xxBxyxxAxy 32123211 ,,, == γβα
.  

 ),,(),,,( 32123211 xxxgyxxxfy == . 

Lets sign 1r , 2r  and 3r  accordingly input prices 

1x , 2x
 and 3x , and then with 1p  and 2p

 output prices 

respectively 1y  and 2y . If  S is the set of all points 
(x1, x2) that satisfy a number of equations we have the 
Lagrangean problem of maximizing or minimizing a 
function subject to equality constraints [5]. Each 
solution (x1, x2, ) gives a candidate (x1, x2) for an 
extreme point. We can finally compare the values of 
function at these candidate points to ascertain where 
its maximum and minimum values on S are attained 
[8]. We can deal with optimization problems with two 
or more constraints simply by using two or more 
Lagrange multipliers [6]. 

For the minimum of cost we have formed 
Lagrange function LC  

 
)],,([)],,([ 3212232111332211 xxxgyxxxfyxrxrxrLC −+−+++= λλ        

  

Moisture 
food 

1x  

Dry food

2x  
Concentra

te 

3x  

From Solution The calculated value Changes for 
Milk yield 

1y  
Calves 
weight 2y  

1y  2y  1y  2y  

10327.5556 4355.0253 2717.38472 6565.5000
1 

 45.2825453 6481.558
241 

 
43.8428100
7 

-
2.075372 

-0.0148 
2632 
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where jλ  is Lagrange multiplier, accompanied with the function of production for jy , j=1,2.  

And we have expressed the necessary conditions for the minimum of LC :  
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This determinant, often referred to as a bordered 

Hessian, shall be denoted by |H¯ |, where the bar on 
top symbolizes the border [12]. And after we have 
assessed the necessary conditions for the minimum 

through bordered Hessian determiner we have proved 
that the cost function has a minimum for the values of 

1x  and 2x  shown in the equations (**).
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It is found that x1 = 10138.85 (x1 = 10138.85440) 

,  x2 = 4274.82 (x2 = 4274.822688),  x3 = 2664.97  (x3 

=2664.967932 ), 1 37.50λ =  1( 37.50006329),λ =  
2 349.99λ = 2( 349.9917827)λ =  

In brackets it is given the value of three figures 
after the decimal place. These estimates were used in 
the MAPLE programme.  

 
 
 
 
 

It is known that the necessary conditions for 
minimizing the costs is required through the main 
minor signsof Hessian determiner in the margin. 

1x
 = 10138.85440, 2x = 4274.822688, 3x = 

2664.967932, 1y = 6424.816564, 2y = 46.48621873  
1 37.50006329,λ =   2 349.9917827λ = .  (a) 

Lets assess the necessary conditions for the 
minimum through Hessianit determiner with the 
margin. 

 350



The impact of nutrition on milk production and weight of newborn calves 
 

2 2 2

2 3 3

0 0 0.1837679811    0.1893708690   0.4194865044
0 0 0.1329637738 10       0.1370176961 10      0.3035159246 10

0.1837679811     0.1329637738 10   0.5168498544 10      0.2187092935 10   0.4739955452 10
H

− − −

− − −

⋅ ⋅ ⋅

⋅ ⋅ − ⋅ − ⋅
=

3

2 3 2 3

2 3 3 2

0.1893708690    0.1370176961 10  0.2187092935 10    0.1553259074 10    0.4739955452 10
 0.4194865044  0.3035159246 10 0.4739955452 10      0.4739955452 10      0.5127990506 10

−

− − − −

− − − −

⋅ − ⋅ ⋅ − ⋅

⋅ − ⋅ − ⋅ ⋅

Since  270.1 10H −= ⋅  > 0 then we proved that 

cost function has a minimum for 1x , 2x  and 3x  

shown in equation (a). The values 1y  and 2y  are in the 
production level for which the cost will be minimal. 

 

The change of input values in 365 days for profit 
maximization and cost minimization are almost 
unnoticed. This shows that profit maximization and 
cost minimization is achieved for the same input 
values. 

We have proved that profit maximization and 
cost minimization is achieved for 1x  =10138.85488 
moisture food , 2x = 4274.822552 dry food and 3x = 
2664.967899 kg concentrat. Iin this case the amount 
of milk produced by a caw will be  6424.816564 kg 
while the average weight of newborn caws will be 
46.48621873 kg. It is proved that the maximum profit 
and maximum revenue achieved in the same point of 
the expansion path where the cost is minimal [3]. 

Food amount per year : 
Moisture food quantity  = 10138.85 kg .        
Dry food quantity    =  4274.82 kg .          
Concentrate food     = 2664.97 kg . 
Cost = 10138.85 · 7.4 + 4274.82 · 7.6  + 2664.97 

· 16.5 = 151488.15 L. 
Income = 6424.82 · 37.5 + 46.49 · 350 = 

257200.8 L. 
Thus, the profit from a caw will be 105712.6 L 

per year. 

Conclusions 

The  following conclusions are attained from the 
sudy: 

During the process of decision-making it is 
becoming always more evident that it is necessary to 
make detailed scientific researches. Thus, the 
realization of livestock production necessitates the 
analyses of inputs in production. 

Applying Cobb-Douglas production functions 
gives the opportunity to realize economic analyses of 
farms for milk caws breeding.  

The study proved that for average production 
levels (21.25115 kg milk per day) the most optimal 
structure would be: 59% moisture food, 31% dry food, 
10% concentrate.  

If the theoretical arguments concerning the 
relative effectiveness of different economic systems 
are subject to empirical testing, it is necessary to do 
some current estimates of effectiveness indicators 
[13]. In the general case, it is showed that maximum 
income is obtained for the same input amount where 
the maximum profit is reached [14]. 

In conclusion, based on our country’s conditions, 
volume system nutrition is prefered.  
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